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Summation of the virial expansion for the equation of state 

w RUDZINSKI 
Department of Physical Chemisiry, Institute of Chemistry UMCS, Lublin, Nowotki 12, 
Poland 

MS received 20 December 1971, in revised form 23 June 1972 

Abstract. A new method is presented for summation of the virial equation of state up to 
infinity. The method is based on Holleran’s unit compressibility law, and leads to a new 
expression for the equation of state, which has promise for the prediction of the first order 
phase transition. 

1. Introduction 

The virial expansion is the most promising description of the behaviour of gases at  the 
present time. Here the virial expansion for the equation of state is the most frequently 
investigated kind of expansion. The virial equation of state expresses the compressi- 
bility factor as a power series in the density, the coefficient of the (n - 1)th power of the 
density being called the nth virial coefficient. The virial coefficients for a given substance 
are functions of temperature only. The experimental measurements of the virial coffi- 
cients, and their temperature dependence, nowadays form a most complete set of data 
concerning the behaviour of gases. 

On  the other hand, the theoretical calculation of the virial coefficients is one of the 
most advanced theoretical investigations of the properties of gases. 

However, it is well known that the virial equations of state (and virial expansions in 
general) are hampered even for moderately high densities, because high order virial 
coefficients are needed, which cannot be calculated at  the present time. Thus, the trunca- 
tion of the virial series is usually made after an appropriate term, the number of which 
depends upon the form of intermolecular potential used in the theoretical calculations. 

The problem which remains is one of summing the virial expansion through all 
terms, up to infinity. It was generally assumed that such a sum should not only describe 
the high density behaviour of gases, but also provide promise, for predicting phase 
transitions. 

Many of the theoretical methods which have been developed to  describe the high 
density behaviour of gases may be regarded as procedures of summation to  infinity, 
by taking into account only some parts of the virial coefficients. We may recall here the 
comparatively large success of some of the approximation methods, in particular of the 
Percus and Yevick (1958), and hypernetted chain (Morita 1969), approximations. These 
approximations seem to give a fairly accurate description, but the origin of this success 
is not very well understood. 

The most recent results along these lines have been obtained by Fulinski (1968), who 
has partially performed this summation, using a new graphical expansion. Later attempts 
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have been made by Fulinski (1970a, 1970b), to sum the virial expansion, given in the form 
as developed by Mayer and Ursell. 

It has been found by Fulinski that the simplest stars make up the greatest contribu- 
tion to the virial coefficients. The summation of the simplest stars leads to a compact 
equation of state, which seems to predict the existence of the first order phase transition. 

In subsequent papers by Fulinski (1971), the method is extended, to sum new addi- 
tional classes of graphs. One of the most interesting results found by Fulinski is the 
connection between some kinds of contributions from the virial coefficients, and some 
kinds of phase transitions. 

The purpose of this paper is to present a new theoretical method of summation of the 
virial expansion for the equation of state. This summation is very simple and leads to an 
extremely simple expression, which is easy to  evaluate. 

2. Theory 

The virial equation of state expresses the compressibility factor Z = PV/RT as a power 
series in density d = l/V: 

m 

Z = 1 + 1 B,d("+') 
n = O  

where Bn-2 is the so called nth virial coefficient, which for a given substance is a function 
of temperature only. It has been found by Holleran (1967) that, under the condition that 
Z is unity, the density is a linear function of temperature, namely 

d = d o (  1 - 5 )  

where d o  and the Boyle temperature TB are characteristic constants, which can be evalu- 
atedfor each substance from PVTdata. By insertingd fromequation(2)intoequation(l), 
and after introducing the dimensionless reduced quantities 

e = -  and pn = d$'+')Bn 
TB 

relation (1) assumes the following simple form when Z is unity : 
m 

p,(i -e)n = 0. 
n = O  

(3) 

(4) 

Next, by the first, second and further differentiations of series (4) With respect to 8, 
one gets very useful relations between the virial coefficients at  the Boyle temperature 
(Holleran 1968). For example 

Now we want to show how Holleran's inter-relations may be applied to our problem of 
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the summation of the virial expansion. To do this we remark that any reduced virial 
coefficient f i n  at the Boyle temperature can be formally expressed by an appropriate 
derivate of the second reduced virial coefficient P o ,  namely 

There exists a difference between the inter-relations expressed by equations ( 5 )  and (6). 
The second virial coefficient expresses the deviations from the ideal behaviour in terms 
of two particle interactions only, while the three, and higher body effects are introduced 
in contributions from the third, and higher virial coefficients, respectively. Expressing 
any virial coefficient in terms of the appropriate derivate of Bo thus takes account only 
of two body forces. 

Let us remark that relation (6) can be generalized, to express any virial coefficient 
/3, at an arbitrary temperature by an appropriate derivate P o ,  taken at the Boyle tem- 
perature : 

Note additionally that 

where o and U ( r )  are the slow-collision molecular diameter and the pair interaction 
energy, respectively. Next, it is easy to check that 

Considering equations (7).  (8) and (9), we get 

and thence 

The compressibility factor is thus given by 

( m + n + j - l ) !  
n = O  j = o  m = l  n ! j ! m ! ( m -  l)! 

Z = 1 - .2nNo3d Joa drr' f f 
Note in addition that 
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Thus 
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After summation with respect to n and j ,  we get 

1 cc 

2 = 1 - 2nNo3d JOm drr2 
m =  1 

Integration by parts yields 

((dld:+8lm 
JOm exp { - t (i + 8 )  } t (m - ) dt = (m - 1) ! 

From equations (15) and (16) it follows that: 

Z = 1 -2nNa3doA loW drr2 { exp ( - ) -1) k TB(A + 8) 

where A, and 8 are the so called ‘reduced’ density and temperature, respectively. 

3. Numerical results and discussion 

Consider now equation (17). It has been shown by Holleran that both the value 
3nNo3d0, and Uo/kTB are the same for all gases interacting via the same potential 
function U .  The Lennard-Jones (12-6) potential has been one of the most widely used, 
and thoroughly studied, potentials, and i t  is well known that for it UokT’ = 3418, 
according to Holleran, 5nNo3d0 = 2397. The dependence of 5nNo3d, on the type of 
potential arises from the fact that it is calculated from another of Holleran’s relations, 
namely that 

As for Bo and B,-theoretical expressions were taken by Holleran, which depend of 
course on the potential assumed. Thus, equation (17) is an equation of state, depending 
upon two reduced variables A and 8. 

From the form of equation (17) it follows that there should only be a negligible 
difference between equation (17) and the truncated series when considering small 
densities. Therefore, it is of no particular interest to investigate the agreement with 
experimental data in the region of small densities. On the other hand, one of the most 
important, and still not completely solved problems of statistical mechanics is the theory 
of condensed phases, and first order phase transitions. 

It is now known that in order to describe a phase transition, it is necessary to take 
into account the intermolecular interactions of infinite range in some way. This may be 
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accomplished either by considering directly the limit of infinite-range original inter- 
molecular two body potentials (Uhlenbeck and Hemmer 1965, Kac et al, 1964, Emch 
1967 and Van Kampen 1970), or by arriving at the infinite-range effective intermolecular 
force field by the summations of some infinite subsets of terms, describing some formal 
expansions ofthe properties of the system under consideration (Van Leeuven et  a/,  1959, 
Morita 1969, Percus and Yevick 1958 and Fulinski 1968, 1970a, 1970b). 

The method presented here follows the second idea, and should therefore predict 
phase transitions. To prove this, numerical calculations of 2 have been performed by 
the author for a wide range of densities and temperatures, including critical conditions 
for particles interacting via a Lennard-Jones (12-6) potential. In addition appropriate 
calculations have been performed by using the truncated series (after the second term) 
for the same range of densities and temperatures. The results are presented and com- 
pared on figure 1. The calculations have been performed for four reduced temperatures : 
8 = 0.1, 0 = 0.2, 8 = 0.3 and 8 = 0.4, respectively. The full curves denote the data 
obtained from equation (17), whereas the broken curves denote the data obtained from 
the truncated series. 

Figure 1. The compressibility factor Z as a function of the reduced density A for four 
reduced temperatures 8. Full curves denote the data obtained from equation (171, and 
broken curves denote the data obtained from the truncated series. The four vertical lines 
marked with He, Ne, N,, and 0, denote the positions of the experimental critical reduced 
densities for these substances. 

Considering experimental data for spherical nonpolar molecules, and assuming them 
to interact via a Lennard-Jones (12-6) potential, one gets the following approximate 
relations that U,/k = 0-770T,, and U o / k  = 0.292TB (Hirschfelder et a1 1954). From this 
it follows that the reduced critical temperature 8, should be equal to  0.4. 

The compressibility factor treated as a function of two reduced variables T/Tc,  
and p / p c  has been investigated thoroughly by Hougen and Watson (1946). They have 
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prepared charts of the compressibility factor in a wide region including critical conditions. 
Their charts were prepared by averaging data for such gases as H,, N, , CO,, CH,, 
which on the other hand obey the Holleran’s law (except for H,). 

It may be observed that the author’s plots based on equation (17), are very similar 
to those experimental plots prepared by Hougen and Watson, in the whole range of 
densities and temperatures under investigation. 

Note that Zmin should be reached for the critical temperature and at a density being 
very near, though a little higher, than the critical density Ac.  The author has evaluated 
the critical reduced densities A, for four substances : He, Ne, N, and O , ,  to investigate 
the agreement with the minimum point Amin for 8, = 0.4. The four vertical lines marked 
He, Ne, N, and 0, in figure 1 denote the positions of the experimental A, for these four 
substances. It is seen from figure 1 that there is verygood agreement for Ne, N, and O,, 
but worse for He. The deviation for helium is probably due to quantum effects. 

However, there exist some serious discrepancies too, between our theoretical and 
experimental results, when considering the ‘critical compressibility factor’, defined as 
p , K / R T , .  It is well known that its value is the same for all simple gases, and is equal to 
0.3, instead of 0.9, as is found by us. In the author’s opinion it is probably due to devia- 
tions of the potentials which really exist in simple gases, from the Lennard-Jones (12-6) 
potential. It may be that neglecting of the three and higher body forces plays a remark- 
able role here. Their contribution to the thermodynamic properties of systems should 
increase as the density increases. 

Next, the author has plotted the reduced density A as a function of the reduced tem- 
perature 8 under the condition that Z is unity. The results are presented in figure 2. 
It follows from figure 2 that the agreement is in excellent accordance with Holleran’s 
unit compressibility law. 

e 

Figure 2. The reduced density A, plotted from equation (17), as a function of the reduced 
temperature 8, under the condition that Z is unity. 

The integration in equation (17) can be performed analytically for some interaction 
potentials ; for example, the rigid-sphere, the square-well, the Sutherland and the 
Lennard-Jones (12-6) potentials. This is an additional advantage of the method pre- 
sented in this paper. 
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